Author: Akkoyunlu Atilla
Publisher: Springer Publishing Company
ISSN: 0920-4741
Source: Water Resources Management, Vol.24, Iss.13, 2010-10, pp. : 3419-3436
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
Data-driven models are commonly used in a wide range of disciplines, including environmental engineering. To analyze Omerli Lake’s historic water pollution status, this study monitors data for dissolved oxygen, 5-day biochemical oxygen demand, ammonium nitrogen, nitrite nitrogen, nitrate nitrogen, and ortho phosphate. The quality of the lake water is assessed based on measurements of dissolved oxygen. The collected data are analyzed using regression analysis and artificial neural network models. The main goal of this paper is to reveal the best applicable data-driven model in order to gain forward-looking information regarding the dissolved oxygen level of the lake using other pollution parameters. In order to ascertain eutrophic status, total phosphorus loads for each year are represented on a Vollenweider diagram. Results designate an increasing risk of eutrophication for Omerli Lake in recent years. Results of the data-driven models show that the artificial neural networks model constitutes the best relationship between the dissolved oxygen and other parameters.
Related content
By Ewert H. Popov S. V. Richter A. Schwabe J. Scheinert M. Dietrich R.
Geophysical Journal International, Vol. 191, Iss. 2, 2012-11 ,pp. :