Minimum Divergence Estimators Based on Grouped Data

Author: Menéndez M.  

Publisher: Springer Publishing Company

ISSN: 0020-3157

Source: Annals of the Institute of Statistical Mathematics, Vol.53, Iss.2, 2001-06, pp. : 277-288

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

The paper considers statistical models with real-valued observations i.i.d. by F(x, _0) from a family of distribution functions (F(x, );  ∈ Θ), Θ ⊂ R^s, s ≥ 1. For random quantizations defined by sample quantiles (F_n^−1 (_1),…, F_n^−1 (_m−1)) of arbitrary fixed orders 0 < _1="" …="">< _m-1="">< 1,="" there="" are="" studied="" estimators="" _,n="" of="" _0="" which="" minimize="" -divergences="" of="" the="" theoretical="" and="" empirical="" probabilities.="" under="" an="" appropriate="" regularity,="" all="" these="" estimators="" are="" shown="" to="" be="" as="" efficient="" (first="" order,="" in="" the="" sense="" of="" rao)="" as="" the="" mle="" in="" the="" model="" quantified="" nonrandomly="" by="" (f^−1="" (_1,_0),…,="" f^−1="" (_m−1,="" _0)).="" moreover,="" the="" fisher="" information="" matrix="" i_m="" (_0,="" )="" of="" the="" latter="" model="" with="" the="" equidistant="" orders="" ="(_j" =="" j/m="" :="" 1="" ≤="" j="" ≤="" m="" -="" 1)="" arbitrarily="" closely="" approximates="" the="" fisher="" information="" j(_0)="" of="" the="" original="" model="" when="" m="" is="" appropriately="" large.="" thus="" the="" random="" binning="" by="" a="" large="" number="" of="" quantiles="" of="" equidistant="" orders="" leads="" to="" appropriate="" estimates="" of="" the="" above="" considered="" type.="">