Heparin Inhibits NF-κB Activation and Increases Cell Death in Cerebral Endothelial Cells after Oxygen-Glucose Deprivation

Author: Lee Jeong   Lee Jinu   Seo Gi   Kim Chul   Ahn Young  

Publisher: Humana Press, Inc

ISSN: 0895-8696

Source: Journal of Molecular Neuroscience, Vol.32, Iss.2, 2007-05, pp. : 145-154

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Heparin is a classic anticoagulant that is commonly used in the treatment of acute ischemic stroke (AIS). Its use remains controversial, however, due to the risk of cerebral hemorrhagic transformation. In addition to anticoagulant effects, diverse effects on transcription factors can be caused by heparin. Among the transcription factors potentially affected is nuclear factor kappa B (NF-κB), a protein that is reportedly related to the survival of cerebral endothelial cells. We investigated the effect of heparin on NF-κB activation and cell death following oxygen-glucose deprivation (OGD), an experimental model of AIS. We subjected bEnd.3 cells from a murine cerebral microvascular endothelial cell line to OGD. We examined the effect of heparin on OGD-induced NF-κB activation and its mechanism of action, using electrophoretic mobility shift assays, reporter gene analysis, real-time RT-PCR, Western blot analysis, and confocal microscopy. We also measured the effect of heparin on OGD-induced cell death using an MTT assay. Heparin inhibited both tumor necrosis factor α- and OGD-induced NF-κB activation. Heparin was taken up by endocytosis and then entered the nucleus. Heparin did not affect the nuclear translocation of NF-κB, but instead inhibited the DNA binding of NF-κB in the nucleus. Cells were more susceptible to OGD-induced cell death after heparin treatment. Besides producing an anticoagulation effect, heparin also inhibits NF-κB activation, resulting in increased susceptibility to OGD-induced cell death. This effect may be responsible for hemorrhagic transformation in patients following heparin treatment for AIS.

Related content