The use of a tannin crude extract from Cistus ladanifer L. to protect soya-bean protein from degradation in the rumen

Publisher: Cambridge University Press

E-ISSN: 1751-732x|1|5|645-650

ISSN: 1751-7311

Source: animal, Vol.1, Iss.5, 2007-06, pp. : 645-650

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Cistus ladanifer L. (CL) is a perennial shrub abundant in dry woods and dry land of Mediterranean zone, with high level of tannins. Tannins bind to protein, preventing its degradation in the digestive compartments. This tannin/protein complex may be advantageous when partially protecting good-quality feed protein from excessive rumen protein degradation. The objective of this trial was to use a CL phenol crude extract to prevent excessive rumen degradation of soya-bean meal protein. The phenolic compounds were extracted using an acetone/water solution (70:30, v/v). Soya-bean meal was then treated with this crude CL extract, containing 640 g of total phenols (TP) per kg of dry matter (DM), in order to obtain mixtures with 0, 12.5, 25, 50, 100 and 150 g of TP per kg DM. Three rumen-cannulated rams were used to assess in sacco rumen degradability of DM and nitrogen (N). The three-step in vitro procedure was used to determine intestinal digestibility. Increasing extract concentrations quadratically decreased the N-soluble fraction a (R2 = 0.96, P = 0.0001) and increased the non-soluble degradable fraction b (R2 = 0.92, P = 0.005). The rate of degradation c linearly decreased with CL extract doses (R2 = 0.44, P = 0.0065). For the effective rumen degradability of N, a linear reduction (R2 = 0.94, P < 0.0001) was observed. The in vitro intestinal digestibility of protein (ivID) quadratically decreased (R2 = 0.99, P < 0.0001) with TP inclusion and the rumen undegradable protein (RUP) showed a quadratic increase (R2 = 0.94, P = 0.0417). Total intestinal protein availability, computed from the RUP and ivID, linearly decreased with TP inclusion level (R2 = 0.45, P = 0.0033).