The $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p$ -cyclic McKay correspondence via motivic integration

Publisher: Cambridge University Press

E-ISSN: 1570-5846|150|7|1125-1168

ISSN: 0010-437x

Source: Compositio Mathematica, Vol.150, Iss.7, 2014-07, pp. : 1125-1168

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Related content