

Publisher: John Wiley & Sons Inc
E-ISSN: 1600-5767|48|2|357-364
ISSN: 0021-8898
Source: JOURNAL OF APPLIED CRYSTALLOGRAPHY (ELECTRONIC), Vol.48, Iss.2, 2015-04, pp. : 357-364
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
The relevance of micro Laue diffraction tomography (µ‐LT) to investigate heterogeneous polycrystalline materials has been studied. For this purpose, a multiphase solid oxide fuel cell (SOFC) electrode composite made of yttria‐stabilized zirconia and nickel oxide phases, with grains of about a few micrometres in size, has been analyzed. In order to calibrate the Laue data and to test the technique's sensitivity limits, a monocrystalline germanium sample of about 8 × 4 µm in cross‐section size has also been studied through µ‐LT. The SOFC and germanium Laue diffraction pattern analyses are compared and discussed. The indexing procedure has been successfully applied for the analysis of the germanium Laue data, and the depth‐resolved two‐dimensional cartographies of the full deviatoric strain tensor components were obtained. The development and application of an original geometrical approach to analyze the SOFC Laue data allowed the authors to resolve grains with sizes of about 3 µm and to identify their individual Laue patterns; by indexing those Laue patterns, the crystalline phases and orientations of most of the grains identified through the geometrical approach could be resolved.
Related content










X‐ray diffraction by phase diffraction gratings
JOURNAL OF APPLIED CRYSTALLOGRAPHY (ELECTRONIC), Vol. 48, Iss. 4, 2015-08 ,pp. :