Ultraviolet sensing based on nanostructured ZnO/Si surface acoustic wave devices

Publisher: IOP Publishing

E-ISSN: 1361-665X|24|12|125015-125022

ISSN: 0964-1726

Source: Smart Materials and Structures, Vol.24, Iss.12, 2015-12, pp. : 125015-125022

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

An ultraviolet (UV) sensor based on nanostructured zinc oxide (ZnO)/Si surface acoustic wave (SAW) devices was studied in this paper. The ZnO films sputtered onto Si (100) substrate showed a preferred (0002) orientation and good photoluminescence emission. For an SAW device with a wavelength of 64 μm, a frequency downshift of ∼1.4 kHz was observed for the Rayleigh mode under a UV light intensity of 0.6 mW cm−2, whereas the frequency downshift for the Rayleigh mode was increased to 8.3 kHz after integrating ZnO nanorods (NRs) in the ZnO/Si SAW devices. For the SAW device with a wavelength of 20 μm irradiated under a UV light intensity of 0.6 mW cm−2, a frequency downshift of 25 kHz for the Sezawa mode was obtained compared to a shift of 12 kHz for the Rayleigh mode. After depositing ZnO NRs, the resonant frequency for the Rayleigh mode was increased to 27.4 kHz under the same UV intensity illumination, due to the significant increase in surface-to-volume ratio.